New Sunspot Group Enters The Stage With Guns A-blazing

If ever an “X marked the spot”, this ‘x’ is it. It’s the first of a pair of x-ray flares that popped this morning at 6:42 a.m. CDT in sunspot region 2087. Photo taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory. Credit: NASA

Sunspot region 2087 announced its arrival on the sun’s southeastern limb today with a real show of firepower. Like a double-barreled shotgun, the group blasted off an X2.2 flare at 6:42 a.m. CDT followed 70 minutes later by an X1.5 at 7:52.

The second flare, an X1.5, peaked around 7:57 a.m. CDT today June 10. Credit: NASA

Although neither was directly in line with Earth, ultraviolet light from the explosions caused a wave of ionization in our planet’s upper atmosphere that affected radio propagation over Europe. Images from NASA’s STEREO solar spacecraft show a coronal mass ejection moving off to one side of the side. It’s not expected to affect the Earth.

The lively sunspot group 2087 has just rotated around the southeastern limb of the sun. 2080 and 2085 are both magnetically complex groups that could spawn M-class flares of their own. Photo taken this afternoon at 1:15 p.m. CDT. Credit: NASA / SDO

Interestingly, the ACE spacecraft, which measures changes in the direction of the magnetic field bundled with the solar wind, dipped south right around the time of the flares. While the two events may be unrelated, anytime the field tilts south, conditions are opportune for the sun’s particle wind to hook into Earth’s magnetic field and possibly fire up auroras.

A large coronal mass ejection, sparked by the double-flare photographed at 9:39 a.m. today by NASA’s STEREO-B spacecraft, expands away from the sun. Credit: NASA

Though it may not be related, the magnetic direction of the wind has been rapidly shifting from north and south all morning and afternoon. Solar astronomers had expected to see flares from sunspot regions 2080 and 2085. Both have complicated delta class magnetic fields ripe with the potential for sparking solar storms. Both also squarely face the Earth. Should an X-class flare erupt in either, the material ejected could wind up producing a geomagnetic storm and accompanying northern lights later this week. So far, they’ve been ‘quiet’ today.

There’s also a chance the plasma cloud released by the X-flare blasts could strike a glancing blow to Earth’s magnetic field; the new group may also continue to produce flares as it rotates into a favorable, Earth-facing position on the sun’s disk.

4 Responses

  1. Edward O'Reilly

    Is it my imagination or does it just seem that when a sunspot,having twisted magnetic fields ripe for a flare,faces Earth it is quiet,only to erupt on either edge of the Sun? Certainly don’t want a damaging event but some nice aurorae,extending south of 50 degrees North,would be nice!

    1. astrobob

      It does seem sometimes that the most highly anticipated and closely-watched sunspot groups don’t flare as much as anticipated. I don’t know statistically, but the surprise element, like the flaring in region 2087, does happen regularly.

  2. Giorgio Rizzarelli

    Very interesting Sun to watch these days, both in visible and Halpha. Did you see the update on spacew? New analysis suggests the CME has an Earth directed component and may be geoeffective. It should arrive tomorrow. Best wishes for aurora!

    1. astrobob

      Yes, I checked the forecast and the probability for auroras is going up in the next couple days.

Comments are closed.