How long would it take to drive to the sun?

My old Subaru achieved lunar orbit when the odometer hit 238,000 miles several years back. Credit: Bob King

I spend way too much time in the car, mostly on the job as a photojournalist. Every day, there are places to be at this time and that. Like many who drive around for a living,  I’ve accumulated a few miles on my vehicles.

Once, in an older Subaru, I achieved a one-time dream of reaching the moon. The odometer rolled past the 238,000 mile mark – just under the average lunar distance but easily within perigee range. I would have pushed the vehicle further, but the brakes seized up and soon after I sold the car. I recall it leaving the driveway on a flatbed like a patient being wheeled away to the emergency room.

The sun is some 387 times farther from Earth than the moon. Credit: Bob King

The years of driving it took to “get to the moon” got me wondering how long it would take to drive to the sun, which lies some 93 million miles (150 million km) from Earth or 387 times farther away than the moon.  According to the Guinness Book of World Records, the record vehicle mileage goes to a 1966 Volvo P-1800S with more than  2,850,000 miles (4,586,630 km). Owned by Irvin Gordon of East Patchogue, New York, the car is still driven daily.

A commercial jet flying at 550 mph would need 19 years to reach the sun. Credit: Bob King

While that trashes my record, it’s still only 3% of the way to the sun, a nice start but barely there. Instead, let’s drive non-stop at 60 mph (97 kph). How long would it take before we would complete our journey? An amazingly long time – 177 years. Strange, isn’t it? The sun seems so close because we can feel its warmth and watch it ripen our tomatoes. But it’s out there, w-a-y out there.

Even in a commercial jet flying at 550 mph (885 kph) it would still take 19 years. I’m afraid I just don’t have that kind of time or patience. Even the 5-hour trip to Hawaii from Los Angeles made me twitchy. The Helios probes, the fastest moving space vehicles ever, reached speeds of 157,000 mph as they orbited around the sun sensing the solar wind. At that rate, the sun could be reached in just 24.7 days.


Bill Nye demonstrates the distances between the planets.

How about a planet? Let’s choose picturesque Saturn, now low in the southwestern sky at dusk. Its average distance from the sun is 891 million miles (1.4 billion km) or 1,695 years in a car. That means if we started driving in 320 A.D. when ancient Rome still dominated the western world, we’d finally arrive today. Aw heck, I’d rather take a plane and get there in just 185 years.

Maps showing the planets and layout of the solar system give a false impression of sizes and distances. But you can hardly blame the creators. There’s just too much empty space between the planets compared to their tiny sizes to squeeze it all a useful diagram. Credit: NASA

Even in the solar system, never mind the stars, distances are so immense we can hardly comprehend them. If we reduced the sun to the size of a grapefruit, Earth would be a poppy seed 35 feet (10.7 m) away, Saturn a pea at 335 feet (102 m) and the nearest star system, Alpha Centauri, a pair of grapefruits 1,800 miles (2,900 km) away. There’s so much emptiness and so little stuff, it’s mind-boggling.

Goodmorning moon / Tomorrow’s Titan flyby

Look east Monday morning around 6 a.m. to spot the goodmorning moon. Only 2.5% of the moon will be illuminated by the sun; the remainder by ghostly earthshine. Venus will be about a fist held at arm’s length to the moon’s lower left. Stellarium

Like a lot of parents, we read Goodnight Moon by Margaret Wise Brown to our kids to get them ready for bed at night. The calming words and repetition soothed child and adult alike at the end of the day.

Maybe a sequel titled “Goodmorning Moon” will be written someday about waking up to the smiling crescent in the east and getting ready for the day. Tomorrow morning we’ll see exactly that, a very thin moon, low in the eastern sky at dawn. Its delicate arc will surely make you stop and realize how much beauty nature puts on the plate for enjoyment and study every day.

Venus seekers can use the moon to make one last attempt to find the planet, now nestled very low in the east just a degree or two above the horizon 40 minutes before sunrise.

Animation showing clouds of methane moving over Ligeia Mare, a large sea of liquid methane near Titan’s north pole, between July 20 and 22, 2014 as Cassini departed the moon during the last flyby. Credit: NASA/JPL-Caltech/SSI

While we’re on the topic of planets, NASA’s Cassini spacecraft will make a close flyby of Saturn’s moon Titan tomorrow September 22nd. At 3,201 miles (5,150 km) across, Titan is the solar system’s second largest moon, only 79 miles smaller than Jupiter’s Ganymede. It’s also unique in having a very thick atmosphere – 1.5 times thicker than Earth’s – a feature usually found only on planets.

It’s still not known how Titan managed to hold onto all its air, which consists of primarily nitrogen mingled with methane and various other hydrocarbons that react in sunlight to create an orange smog that gives the moon its distinctive color. Several other moons such as Ganymede, Rhea and even our own moon have atmospheres, but they’re exceedingly thin compared to Titan’s.

In this photo taken by Cassini, Saturn’s airless, cratered moon Dione is juxtaposed with Titan. Titan appears smaller because it’s 600,000 miles farther away from the spacecraft’s perspective. To see beneath the clouds and map the surface, Cassini observes the moon in infrared light and with radar. Credit: NASA/JPL-Caltech

It’s thought that Titan maintains and replenishes its atmosphere through outgassing from its interior. The bitter cold temperatures at Saturn’s nearly billion mile distance from the sun along with Titan’s considerable gravitational pull undoubtedly help preserve and hang on to its air. Comet impacts may also contribute to the moon’s stockpile of ices and organic compounds.

Along with an atmosphere come clouds, though of methane rather than the water vapor variety found on Earth. Temperatures at the surface hover just 90 degrees above absolute zero (-290º F, -179º C), chill enough for methane clouds to form and supply at least some of the precipitation to lakes of liquid ethane, methane and propane below.

This will be Cassini’s 9th flyby of Titan this year. During a flyby, the craft zips by the moon at high speed while keeping its instruments precisely pointed at the target using either its reaction wheels or thrusters, which spin the spacecraft to track the moon as it passes by. Thrusters are also used to keep Cassini from tumbling when it experiences drag while passing through Titan’s upper atmosphere during close flybys.


Descent through Titan’s atmosphere made by the Huygens probe on January 14, 2005

On Monday, Cassini will be traveling at 13,000 mph (21,000 km/hr) and come within 870 miles of Titan’s surface as it photographs seas and lakes – including Ligeia Mars shown above – around the north pole. Another instrument will observe Titan’s southern hemisphere atmosphere in ultraviolet light by observing the dimming of Alkaid, the star at the end of the Big Dipper’s handle as its light passes through the moon’s varied atmospheric layers.

Jupiter-moon conjunction / Space station expecting guests / Hello Mars!

Tomorrow morning September 20th the crescent moon will be lined up in conjunction with the planet Jupiter ahead of the Sickle of Leo. This view shows the sky a little more than an hour before sunrise. Stellarium

Getting a little extra sleep these September mornings? That benefit comes from later sunrises as we approach the fall equinox. I don’t know about you, but I sleep better in a darkened bedroom.

The rate of change has really picked up in the past few weeks with the sun now rising around 7 o’clock, a far cry from late June’s 5:15.

Later sunrises also mean a chance to catch an early morning sky event. Many of us are active around 6 a.m. prepping for work or getting your children ready for school. If you can find a few minutes to spare, tomorrow morning offers up two fine sights.

Look east in the brightening dawn and you’ll see a slender crescent moon in conjunction with the brightest of the planets, Jupiter. The two will just 5º apart meaning you’ll be able to squeeze three fingers held at arm’s length between them. Then, between 5:30-6:15 a.m. now through at least next week, the International Space Station (ISS) will be making regular passes across the northern sky from many locations across the U.S., Canada and Europe.

To find out exactly when and where to look, key in your zip code at Spaceweather’s Satellite Flybys site or select your city at Heavens Above. The ISS looks like the brightest “star” in the sky and travels from west to east. A typical complete pass takes about 5 minutes.

An earlier SpaceX Dragon capsule docking with the space station in March 2013. Astronauts will use the grapple arm to grab the capsule Monday morning Sept. 22 at around 6:30 a.m. CDT. Berthing begins around 8:45. Click to enlarge. Credit: NASA

The three current astronauts aboard the space station await the arrival of the other half of their crew next week. NASA astronaut Barry Wilmore, Soyuz Commander Alexander Samokutyaev and Flight Engineer Elena Serova will launch aboard their Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan on Sept. 25 to begin a six-hour, four-orbit trek to the orbiting complex.

Before that, SpaceX’s unmanned Dragon ship will launch tomorrow morning Sept. 20 at 1:14 a.m. Central time to deliver cargo and crew supplies to the ISS early Monday morning Sept. 22nd.

Among the items are the first 3D printer in space, the ISS-RapidScat instrument to monitor ocean winds for climate research and weather forecasting and a commercial experiment designed to make a better golf club. The printer will allow astronauts to make their own tools and replacement parts that would otherwise cost a lot of money to ship up from Earth.

Fruit flies such as these spent one month aboard the International Space Station during an earlier study. More are on the way. Credit: NASA / Dominic Hart

20 female mice and 30 fruit flies will also go along for the ride. The mice will be housed in the new Rodent Research habitat, where they’ll be studied for the effects of spaceflight on the human body. In space, rodents don’t spend their time floating around. They’re very physically active but tend to hold onto the walls.

Fruit flies will be monitored for the effects of oxidative stress changes which happen in organisms ranging from fruit flies to humans. Oxidative stress involves a build up of harmful molecules inside cells that can cause cell damage, and it’s associated with infections and disease.

Artist view of India’s Mars orbiter at Mars. Arrival and orbit insertion is expected for Sept. 24. Credit: ISRO

There’s much more in the works for space mission news as Mars welcomes two new emissaries from Earth. NASA will insert the MAVEN spacecraft into orbit around Mars Sunday night, and India’s Mars Orbiter Mission (MOM) will arrive at the planet only three days later on Sept. 24.

The MAVEN mission will study Mars’ climate present and past as scientists try to figure out how the planet evolved from a warmer, wetter past to the current dry, cold desert. MOM is India’s first-ever mission to another planet. While primarily a demonstration and testing of that country’s technology, MOM will also photograph the Red Planet and study its mineral makeup from orbit.

Struggled to find Uranus? Let the moon take you there tonight

Once you’re done chuckling, we’ll move on. Ahem!

The waning gibbous moon will near the planet Uranus tonight September 10, 2014. From northeastern U.S. it will be covered by the moon. These views show moon and planet from Syracuse (eastern U.S.) and the Midwest at the times shown. Source: Stellarium

If you’ve ever had trouble finding the remote planet Uranus, Luna can help you tonight. The waning gibbous moon will occult or cover up the planet for observers in northeastern North America, Greenland, Iceland and northern Scandinavia around 8 p.m. Eastern Daylight Time this evening.

If you have a small telescope, you’ll be able to watch the bright eastern (left) edge of the moon slowly approach and then hide the planet. Unlike a point-like star, which winks out in a split second when covered by the moon’s edge, Uranus shows a small disk and will fade more gradually over several seconds.

Observers in the wedge-shaped zone that spans the Northeastern U.S., Canada and other northern countries will see the moon cover Uranus. Those living in the U.S. and Canada will spy the planet very close to the moon’s west rim. Credit: USNO

But let’s say like me you live outside the occultation zone. What will we see? From the Midwest, Uranus will be just less than 1° to the west (right) of the moon as it comes up in the eastern sky in late twilight. Over the hours, it will appear to move gradually drift to the west away from the moon as the moon moves eastward in its orbit.

The farther west you live, the farther Uranus will be from the moon’s western edge. But not too far. Even from the California Coast, Uranus strays only about 2° (four moon diameters) to the right of the moon.

The planet may even be easier to see in binoculars from points west because it will be further from the lunar glare. No matter what, it’ll be easy to find the planet, which shines around 6th magnitude.

The view from the U.S. West Coast around 10 o’clock local time tonight. Source: Stellarium

Remember, you’ll need 50 mm binoculars, or better, a small telescope, to view the planet near the moon. Telescope users are encouraged to crank up the magnification and see Uranus’ diminutive disk next the moon, which appears gigantic in comparison. In reality, the 7th planet is nearly 15 times as large.

Uranus only a degree east of the totally eclipsed moon seen from the Midwest on October 8, 2014. Stellarium

Get ready for an even better shot at seeing Uranus. On the morning of October 8th, the full moon will be in total eclipse and the planet will lie very close due east. With no glary moonlight and everyone focused on the eclipse, more people will probably see Uranus at one time than perhaps any time in history.

Moon, Mars, Saturn and Antares gather at dusk tonight

The crescent moon, Saturn and Mars will form a compact triangle in the southwestern sky in this evening August 31st. 3.5º separate the moon and Saturn; Mars and Saturn will be 5º apart. Antares is about two ‘fists’ to the east or left. Stellarium

Don’t miss tonight’s sweet gathering of crescent moon and evening planets. Just look to the southwest in late twilight to spot the trio.

Both Saturn and Mars happen to be exactly the same brightness, shining equally at magnitude 0.8, but each with a distinctly different hue. Can you see the contrast between rusty red Mars and vanilla-white Saturn?

Antares is a red supergiant that’s blowing a powerful stellar wind into space at the rate of several solar masses every million years. One day it’s likely to explode as a supernova. Credit: Wikimedia

All this happens in Libra, a dim zodiac constellation preceding the brighter and better known Scorpius. Scorpius brightest star, Antares, is similar to Mars in color and just a tad fainter.

Visually, this red supergiant star doesn’t even hint of its true proportions because it’s 620 light years away, too far to appear as anything more than a shifting point of light. Measuring in at three times the diameter of Earth’s orbit, if Antares were put in place of the sun, its bubbly surface extending beyond the orbit of Mars.

How Antares would appear if we could get close enough to see it based on simulations by A. Chiavassa and team. Huge convective cells of rising and sinking gas crinkle its surface. Click to read the group’s 2010 research paper on the star. Credit: A. Chiavassa et. all

Recent research shows the star dominated by enormous bubbles of incandescent hydrogen gas called convective cells. Although it has a mass some 18 times that of the sun, the star’s powerful winds – from convection and sheer radiant energy – blast away something like 3 solar masses of material into space every million years. Unless Antares slims down through mass loss, it’s destined to grow a core of iron, collapse and explode as a supernova in the future.

Miss the conjunction? Here’s your consolation prize

Clear skies prevailed over Königswinter, Germany for a great view of Venus and Jupiter just 0.2° apart at dawn this morning August 18. Credit: Daniel Fischer

Those killers of all things astronomical – clouds – were back again this morning, so no Venus-Jupiter conjunction here. Looks like I’ll pin my hopes on the one scheduled for next June 30 in Leo at dusk. I’m grateful for the flatness of the solar system, which guarantees that every few years we get repeat planet pairings.

Look east this coming Saturday morning for a sweet pairing of the bright planets and wiry crescent moon. This view shows the sky about 45 minutes before sunrise. Stellarium

I hope some of you got to see the conjunction from your home or on the way to work this morning. While Venus and Jupiter will now part ways, they’ll be one more blast of celestial awesomeness involving the duo and the crescent moon this weekend. Consider it a consolation prize. Who knows, this event might be even prettier than what passed this morning.

On Saturday morning, August 23rd about 30-45 minutes before sunrise, the thin, waning lunar crescent joins Jupiter and Venus in a stunning triangle of loveliness in the eastern sky.The threesome will all fit inside an 8° circle.

Now that I know this is coming I don’t feel so bad about missing the conjunction.

Sunday’s Supermoon sweetens August skies

Tomorrow night August 10 we’ll witness the closest full moon of the year. Credit: Bob King

OK, it’s not the Super Bowl exactly. No, this is better. Tickets are free, there’s plenty of parking and you can watch all night commercial-free. Yes, it’s time for the supermoon!

Tomorrow night, the Full Sturgeon Moon occurs at the same time the moon is closest to the Earth or as astronomers like to say, at perigee. The moon passes through perigee and its distant counterpart, apogee, once every 27.3 days, the time it takes the moon to orbit once around the Earth.

Sometimes perigee happens at first quarter moon or crescent phases and no one pays any attention. But when it occurs at full moon, we sit up and notice.

A sexy new term has even been coined in the past 30 years to describe the perigean full moon. Supermoon.

The moon’s orbit around Earth is an ellipse with one end closer to the planet (perigee) and the other farther (apogee). The year’s most distant lunar apogee happened two weeks ago; its closest perigee takes place during tomorrow night’s supermoon. Credit: Bob King

It’s hard not to be seduced by a big bright ball of pure bling. What’s more, the full moon rises at sunset and remains out all night unlike those skittish crescent moons that quickly hide behind trees and set. Its brilliance lights the otherwise dark road at night and adds an ethereal dimension to drabbest of landscapes.

July’s full moon as well as September’s will occur around the time of perigee, but tomorrow night’s will nearly coincide, making it the closest full moon of 2014.

Tom Ruen created this wonderful illustration showing the three supermoons of July, August and September compared to the ‘submoons’ or distant full moons coming up in 2015. You can easily see the difference in moon size comparing the top row to the bottom. The numbers give the moon’s diameter in arc minutes. 30 ‘minutes’ equals 1/2 degree. Credit: Tom Ruen

How close?  221,764 miles (356,896 km). That’s compared to an average distance of 238,855 miles, so the moon will be a smidge more than 17,000 miles closer to your doorstep than normal. Not only will it appear slightly brighter but 7% larger. Unfortunately, the difference, though real, will be nearly impossible to discern because we have no way to compare simultaneous side-by-side near and far full moons. Only after the fact, say by taking a picture of a distant full moon and placing it alongside a photo of a close one, could you tell.

Lots of us connect the dark spots or lunar ‘seas’ to make the face of the ‘man in the moon’ but how many have seen the rabbit? The ears form the strip over the top, the bright crater Aristarchus is the rabbit’s eye, there are two sets of legs and even a tail. Credit: Luc Viatour

2014′s most distant or apogean moon occurred just two weeks ago on July 27. No surprise given that the closest moon should naturally happen on the opposite end of the moon’s orbit or about two weeks later. The super thin crescent on that date was 252,629 miles (406,568 km) from Earth or nearly 31,000 miles farther than tomorrow night’s full moon – a difference of 13%.

Enough with numbers. They’re only a backdrop for the real show. Go out and enjoy a moonrise tonight and tomorrow night.  Not sure when the moon comes up? Head over to timeanddate.com and type in or search for your city. Since the moment of full moon happens early Sunday afternoon for U.S. and Canadian locations, tonight’s moon will be nearly as full.

I walked a mile in the moonlight last night and hope to do it again tonight. Is there a better month for moonwalking than August?

Crescent moon joins a planet parade / Opportunity ready for marathon run

The moon scoots by two bright stars and two bright evening planets in the next few nights. This map shows the sky facing southwest in late evening twilight. Stellarium

The moon joins a lineup of planets and bright stars hung like tiki lamps across the southwestern sky at dusk. Watch for it to pass near fading Mars Saturday evening and Saturn on Monday.

The Martian landscape photographed by on July 30, 2014. The rover is exploring south along the west rim of Endeavour Crater heading toward a notch called ‘Marathon Valley’ about 1.2 miles (2 kilometers) away. Credit: NASA/JPL

While you’re gazing at the Red Planet, know that the Opportunity rover made news this week when it set a record for the most miles ever driven off-planet, tallying a satisfying 25 miles (40 km) of Martian travels. The previous record was held by the Soviet Union’s Lunokhod 2 rover when it ambled across 24.2 miles of the moon’s surface in 1973.

Out of this world distance records compared. Credit: NASA

Opportunity surpassed that record on Monday July 28 when it registered 25.01 miles en route to a notch called Marathon Valley along the west rim of Endeavour Crater. Mission controllers would like to get a look at clay minerals there that have been spotted from orbit.

Lunokhod 2 crater photographed by Opportunity last spring. The crater’s 20 feet (6 meters) in diameter. Credit: NASA/JPL

When it reaches the Valley it will have completed 26.2 miles (42 km), the official distance of a marathon. When you consider that Opportunity and its sister probe Spirit were only intended to function for 90 days, the current record-breaking feat and upcoming marathon completion are that more remarkable.

101 geysers erupt from Enceladus’ salty deeps

At least 20 geysers blast icy particles and water vapor from cracks in the icy crust of Saturn’s moon Enceladus. Scientists recently confirmed the geyser material derives from a salty ocean beneath the moon’s surface. Credit: NASA/JPL

Future astronauts better watch where their step when exploring the south polar terrain of Saturn’s icy moon Enceladus. A geyser could pop up anywhere.

This graphic shows a 3-D model of 98 geysers whose source locations and tilts were found in a Cassini imaging survey of Enceladus’ south polar terrain by the method of triangulation. Credit: NASA/JPL-Caltech/Space Science Institute

NASA’s Cassini spacecraft have identified 101 distinct geysers erupting on Saturn’s icy moon Enceladus. Cassini has studied and photographed the moon’s intriguing ‘tiger stripe’ fractures for over 7 years and discovered that each of them coincides with a particular hot spot within a fracture.

Three competing hypotheses were put forward to explain how geysers might happen on an ice-covered moon nearly a billion miles from the warmth of the sun.

#1 – Tidal flexing: As Enceladus revolves around Saturn, the planet’s enormous gravity flexes the little moon, heating up its interior and melting ice into water which escapes as vapor through openings in the icy crust.
#2 – Frictional heating: Back-and-forth rubbing of opposing walls of the fractures generate frictional heat that turns ice into geyser-forming vapor and liquid. Same principle as rubbing your hands together to create heat.
#3 – Jaws of ice: The opening and closing of the fractures caused by Saturn’s gravitational might exposes water from below when then quickly vaporizes in the moon’s vacuum.

This artist’s rendering shows a cross-section of the ice shell immediately beneath one of Enceladus’ geyser-active fractures, illustrating how water works its way to the moon’s surface. Credit: NASA/JPL-Caltech/Space Science Institute

But a detailed study by Cassini in 2010 appears finally to have netted the correct explanation. The probe’s heat-sensing instruments matched the geysers’ locations with small-scale hot spots only a few dozen feet across - too small to be produced by frictional heating, but the right size to be the result of condensation of vapor on the near-surface walls of the fractures.

“Once we had these results in hand, we knew right away heat was not causing the geysers, but vice versa,” said Carolyn Porco, leader of the Cassini imaging team and lead author of the first scientific paper on the discovery. “It also told us the geysers are not a near-surface phenomenon, but have much deeper roots.”

Researchers concluded the only logical source of the material forming the geysers is the sea now known to exist beneath the ice shell. They also found that narrow pathways through the ice shell can remain open from the sea all the way to the surface, if filled with liquid water. This implies, at least in my mind, that liquid water might exist as pools in hot spots encircled by thick rims of ice (condensed water vapor) on the moon’s chill -330° F (-201° C) surface.

Imagine standing nearby watching fountains of vapor turn to ice crystals before your eyes and sparkling like diamond dust against the black starry sky.

Source: JPL

Moon nestles in Hyades then departs for Venus

The crescent moon slips in front of the Hyades star cluster only a degree from Aldebaran tomorrow morning. Don’t miss the other bright star cluster, the Pleiades, just above. Look low in the northeastern sky about an hour before sunrise to catch the scene. Stellarium

That old devil moon’s up to its old tricks again. Tomorrow morning, early risers will see it tucked inside the V-shaped face of Taurus the Bull. Better known as the Hyades star cluster, look for the crescent to pass just 1° north of the bright star Aldebaran. A pair of binoculars will enhance the view by pulling in more stars and revealing details in the spooky, earth-lit moon. Sunlight illuminates the lunar crescent, but the remainder is light reflecting off Earth out to the moon and back again.

The crescent is lit by the sun while the remainder glows dimly from twice-reflected light called earthshine. Credit: Bob King

To the eye, ‘earthlight’ looks smoky gray and nearly featureless though binoculars will show the lunar seas and larger craters. The quality of the light mimics a lunar eclipse but instead of red we see the pale blue glow of sunlight reflecting back from our planet’s oceans.

At 153 light years, the Hyades is the nearest star cluster to our solar system, one of the reasons you can see it without a telescope. Aldebaran appears to be a full-fledged cluster member, but it’s a ruse. The bright, ruddy star lies much closer to us along the same line of sight.

Venus and a very thin crescent moon on July 24 about 45 minutes before sunrise low in the northeast. Stellarium

The Hyades were born in a dense cloud of interstellar dust and gas 625 million years ago around the time underwater life flourished in the late Precambrian era. When you gaze at the cluster tomorrow, the light that touches your retinas left the Hyades the same time Abraham Lincoln took office.

The moon moves on toward Venus after vacationing in the Hyades, passing south of the planet on Thursday morning. It will be extremely thin that morning and should make a pretty sight for anyone looking low in the northeastern sky 45 minutes before sunrise.