King-size sunspot slip-slides away

Active Region 2192 will soon pass beyond the western limb to the farside of the Sun. While it’s size has decreased slightly, it still harbors a complex magnetic field and potential for “farewell flare” or two. This photo was taken today October 28th. Credit: NASA/SDO

Big, attention-getting and explosive, sunspot region 2192 will make a final bow before departing for the farside of the Sun in the next couple days. Many of us grabbed a souvenir photo of the giant spot during last week’s partial solar eclipse. Given its size and complexity there’s an excellent chance it will return in mid-November when the Sun carries it around for Act II.

The most recent large flare from Region 2192 was a powerful X2-class on October 27th. This photo shows the view in ultraviolet light from NASA’s Solar Dynamics Observatory. Credit: NASA

Despite shooting off 5 X-class and 12 M-class flares, none of them lofted a coronal mass ejection (CME) toward the Earth, the reason why there have been no significant auroras during its transit. CMEs are enormous clouds of subatomic particles – mostly protons and electrons – that can strongly interact with Earth’s magnetic field to do everything from damaging satellite electronics and poorly protected power grids to producing spectacular displays of northern lights.

Explosive, particle-releasing flares from region 2192 as it rounds the Sun’s western limb can spiral back directly to Earth along the Sun’s magnetic field lines like a curve ball. Credit: Nathan Schwadron, UNH-EOS

But don’t say ‘bye-bye’ to 2192 just yet. According to Dr. Tony Phillips at Spaceweather, the western limb of the Sun is well-connected to Earth. Should the giant spot flare in the next couple days, particles could spiral back along the Sun’s magnetic field lines directly our way. There’s hope yet for auroras.

Fleet of foot Mercury appears at dawn

Mercury comes into good view the remainder of October and the first week of November low in the eastern sky during morning twilight. This map shows the sky from the central U.S. (Champaign, Ill. in particular) tomorrow morning October 28 about 40 minutes before sunrise. Also shown is the planet’s orbital path in the sky and the bright star Arcturus, which you can use to help you find the planet. Source: Stellarium

Mercury is the solar system’s hot sports car. Not only is it the smallest planet, but it rips around the Sun once every 88 days, faster than any of the others. That’s 4 revolutions for every one the Earth makes. As you read this, Earth’s toting you around the Sun at 66,600 mph. Mercury’s got the pedal to the metal at nearly106,000 mph.

Now through the early November you have a chance to watch this speed demon in morning twilight. Six times a year the fleet planet reaches greatest elongation from the Sun, when it’s highest above the horizon during twilight and easiest to spot. This season that date is November 1st, but you can look for Mercury anytime now through about Nov. 10th.

Mercury has phases like the Moon because of the changing angle it makes to the Sun as viewed from Earth during its 88-day orbit. The dates show inferior conjunction between Earth and Sun (Oct. 16), greatest western elongation (Nov. 1), superior conjunction (Dec. 8) and greatest eastern elongation (Jan 14) when the planet returns to good evening sky viewing. Credit: Bob King

Unlike the outer planets, which orbit beyond the Earth, Mercury orbits between our planet and the Sun. That’s why it never strays far from the Sun in the sky and only puts in an appearance after sunset at dusk or before sunrise at dawn. Because it’s in such an orbital hurry, we usually only get to see the planet for a couple weeks during each favorable elongation.

Mercury shows phases like the Moon. This is approximately how the planet will appear in the next few mornings. Source: Stellarium

To the eye, Mercury looks like a fairly bright star (magnitude 0 and brightening to -0.7 in the next two weeks), but through a small telescope it shows phases just like the Moon and Venus.

Right now it’s a fat croissant but it will fill out and brighten in the days ahead.

Take advantage of the late morning sunrises in the days before we lose Daylight Saving Time to find Mercury at a reasonable hour (around 6:40-7:15 a.m. from many locations).  Look “one fist” above the eastern horizon about 45 minutes before sunrise.

 

Moon bites sun, mankind cheers!

The sun sets while still in eclipse as seen from Duluth, Minn. Thursday evening October 23. Credit: Bob King

I hope you all got at least a glimpse at the partial solar eclipse this afternoon. The weather cleared off just in time here for a beautiful view from over Superior Bay in Duluth, Minn. As expected, many of us couldn’t take our eyes off the magnificent sunspot group.

Sometimes clouds can be your friend. Credit: Stuart McDaniel

Although we looked at the eclipse through the telescope and camera back, my friend and I agreed the best views were at 1x magnification using nothing more than mylar and welder’s glass. Both the nibbling moon and sunspots were easy to see, and without a frame around the scene, the Sun felt closer, more natural.  Because we watched from an open site on a bay, dappled sunlight on water added a nice touch.

Fr. Larry Regynski’s niece creates pinholes with her hand and uses it to project crescent suns on the wall.  Credit: Fr. Larry Regynski

65% of the Sun was covered for us, and while Sun brightness normally drops off near sunset, there was no question that everything around us looked dimmer than normal with half the Sun gone.

Here are a few photos to enjoy. If you took one you’d like to share, please e-mail it to me at rking@duluthnews.com and I’ll put it up on the blog.

Still keeping an eye on possible auroras tonight. Right now, all is quiet, but I suspect that big sunspot group sooner or later will crank up the heat.

Eclipse season is over now – the next of note for the Americas will be a total lunar eclipse on April 4th next year.

This is how the eclipse looked in a small 3.5-inch refracting telescope. Credit: Bob King

Amateur astronomer Mike Sangster holds up a photographic solar filter over the eclipsed sun Thursday. Credit: Bob King

Gorgeous! Dimmed by haze and high clouds, the eclipsed sun sets in the west Thursday evening. Credit: Mike Sangster

Me with my head stuck in a telescope … as usual. To observe and photograph the eclipse I used a 94mm refractor fitted with a photographic solar filter. Most exposures were shot at 1/4000-second at f/14. Credit: Mike Sangster

Sweet sunset shot in Owatonna, Minn. taken with a 210mm telephoto at ISO 100, f/18 and 1/4000-second. Credit: Gary Johnson

Mike Sangster crossed one hand over the over to create small gaps that acted as pinhole projectors. He managed 3 crescent suns on the side of his car. Credit: Bob King

Two crescent suns almost lost in the woods. Left: From Duluth’s Skyline Parkway near Bardon Peak from Art Johnston. Right: From the Pike Lake boat ramp taken by Guy Sander

Biggest sunspot in 5 years may steal the show during today’s eclipse

Active region 2192 (AR 2192) is about the same size as the planet Jupiter or 87,000 miles end to end. This illustration is based on a photo of the  sunspot group taken October 22. Click for more information and animations. Credit: NASA/SDO/Alex Young

Wow, have you ever? Look at that sunspot group. If it seems bigger than any you’ve ever seen you’re right. At least in the last five years. Active region 2192 is the largest sunspot group recorded so far in Solar Cycle 24 which began in 2009. Solar cycles typically last about 11 years and chart the rise and decline of sunspots, flares and other solar activity.

The giant spot group 2192 faces Earth squarely today and should look spectacular during this afternoon’s partial solar eclipse.  Here we see many cooler, darker umbrae surrounded by the lighter penumbrae. The group has a magnetically complex beta-gamma-delta magnetic field ripe for flaring. Credit: NASA/SDO

Yesterday I grabbed my #14 welder’s glass and couldn’t believe how easy it was to see this behemoth. If you have a filter ready for today’s partial solar eclipse, use it to look at the sun anytime, and you’ll see what I mean.

Rarely do naked eye sunspots look like more than dark dots. Region 2192 stands apart. Look carefully through your filter and you’ll discern that the left side (eastern half) looks darker than the western side. That’s because most of the darker bits, called umbrae, are concentrated there.

The sun this morning Oct. 23 with our featured sunspot group facing toward Earth. Credit: NASA/SDO

Sunspots have two parts – a dark core (or cores) called an umbra surrounded by a pale, skirt-like penumbra. Each spot group marks a region on the sun’s fiery outer skin where magnetic energy is concentrated. The magnetic forces that permeate the Sun are the same as those that flow the magnets on your refrigerator but contain vastly more energy because they cover huge regions of the Sun’s surface or photosphere.

Strong magnetic fields within a sunspot group quell the turbulent churning of the photosphere, chilling the region by several thousand degrees. Sunspots appear dark against the Sun’s blazing disk because they’re cooler. If you could rip them away from the Sun and see them alone against the sky, they’d be glaringly bright.

The crazy big sunspot group unleashed an X-class flare around 9 a.m. October 22 seen in these photos taken in two “flavors” or far ultraviolet light by NASA’s Solar Dynamics Observatory. Credit: NASA/SDO

Twisty fields of magnetic energy looping above sunspots can become unstable in the hot, turbulent environment of the Sun’s surface, which bubbles and boils like overcooked oatmeal in a microwave oven, and release their pent-up power in violent explosions called solar flares.

2192 has been no stranger to flares. Harboring a complex beta-gamma-delta magnetic field where the magnetic “north poles” and “south poles” lie side by side, they practically beg to explosively reconnect. Since Monday, the spotted beast has spewed two X-class (most powerful) and 8 M-class (medium strength) flares. So far though, none has been directed toward the Earth.


Watch the big group rotate onto the sun’s face and grow in the 72-hour animation made with NASA’s Solar Dynamics Observatory

That’s likely to change very soon since the group is now squarely facing the planet. Already, NOAA’s space weather forecast calls for a 95% chance for more M-class and 55% chance for X-class flare in the next 24 hours. Space weather is expected to be strong during the same period. That might mean auroras coming around as soon as this evening. I’ll keep you posted.

Not only will the sun be eclipsed this afternoon but the planet Venus shines just 1.1 degrees to its north. Venus is very close to superior conjunction which occurs early Saturday. In the photo, the planet is in the background well behind the Sun. Don’t count on seeing Venus – too much glare! This photo was taken from space by NASA’s Solar and Heliospheric Observatory this afternoon using a coronagraph to block the Sun from view. Credit: NASA/ESA

Good luck with today’s eclipse. If you need more information including viewing times for your city, please see my earlier blog on the topic.

Feel the bliss, don’t miss Thursday’s partial solar eclipse

The solar crescents show how much Sun will be covered at maximum for various locations across the U.S. and Canada during the October 23rd (Thursday) partial solar eclipse. Credit: Jay Anderson

Doing anything Thursday afternoon? Have a few minutes to spareThere’s a partial eclipse of the Sun visible across much of North America and of Mexico you might like to catch. For observers in the U.S. and Canadian West the whole event begins and ends in the afternoon before sunset. Those living east of the Great Plains will see the Sun set while still in eclipse.

During a solar eclipse, the orbiting Moon passes between the Sun and Earth, completely blocking the Sun from view as shown here. In Thursday’s eclipse, the moon will pass a little north of a line connecting the three orbs, leaving a portion of the Sun uncovered. To view a partial solar eclipse, a safe solar filter is necessary. Credit: Wikipedia

Solar eclipses occur when the Moon glides between the Earth and the Sun, temporarily blocking it from view. Total solar eclipses get most of the attention because the Earth- Moon-Sun alignment is perfect. Like a snug lid on a pot, the Moon blanks out the Sun completely to create a dramatic spectacle of a black, fire-rimmed disk set in a plush solar corona.

Partial eclipses happen because the Moon’s orbit is tipped a few degrees to the Sun-Earth line. Most months, it passes north or south of the Sun and misses it completely. But during a partial eclipse, the Moon’s close enough to that line to partially block the Sun from view. Unlike a total eclipse, all phases of a partial eclipse are unsafe to view unless you use a safe solar filter or view it indirectly via projection.

Map showing times and percentage of the Sun covered during Thursday’s partial solar eclipse. Times are Pacific Daylight – add 1 hour for MDT, 2 hours for CDT and 3 hours for EDT. Interpolate between the lines to find your approximate viewing time. The arc marked A shows where the eclipse begins at sunset; B = Maximum eclipse at sunset and C = Eclipse ends at sunset. Credit: NASA, F. Espenak,with additions by Bob King

As you can see from the map, nowhere will this eclipse be total. Maximum coverage will happen in Nunavut Territory in northern Canada where the musk oxen might catch sight of a fat solar crescent 81% covered by the moon at sunset. The farther north you live in the U.S. or Canada, the deeper the eclipse. Northern U.S. states will see around 60% covered compared to 40% in the deep south.

In Duluth, Minn. for example, the eclipse begins at 4:21 p.m., reaches a maximum of about 65% at 5:33 p.m. and continues into sunset at 6:06 p.m. Since the sun will be low in the western sky from many locations, be sure to get a spot with a wide open view in that direction.To find out times and coverage for your city, use these links:

* U.S. Cities
* Cities in Canada and Mexico 

Some of the different kinds of safe solar filters available. They work by reflecting or absorbing most of the light from the Sun, allowing only a fraction through to the eyes. NEVER LOOK DIRECTLY AT THE SUN without one. Click photos for a supplier of eclipse glasses. Credit: Bob King

Solar filters come in a variety of styles from inexpensive eclipse glasses that use an optical polymer to glass welder’s filters to caps you place over the front end of a telescope. It’s important to use the correct kind – don’t stack a bunch of sunglasses and figure “it’ll do” or look through smoked glass. They still allow dangerous UV and infrared light to pass through and will mess up your retinas for life.

Because we’re on the heels of the eclipse, if you don’t already have a pair of eclipse glasses I recommend a #14 welder’s glass. It’s my favorite actually because it’s easy to stuff in a pocket and heavy-duty enough to take a few dings. You can pick one up for a few dollars at a welding supply shop. Only buy a #14 – lower numbers won’t cut it.

A piece of aluminum foil, a pin and a cardboard box are all you need to build a pinhole projector. The tiny hole creates a small image of the eclipsed Sun inside the darkened box which you place over your head. Remember to look at the projection of the sun on the inner wall of the box – not through the pinhole itself.

Projection provides a fine alternative to using a filter. You can mount a pair of binoculars (or small telescope) on a tripod and project the Sun’s image on a sheet of white paper or build your own pinhole projector using the instructions above.

You can mount binoculars on a tripod, cover one lens with a lenscap and project the sun’s image safely onto a sheet of white cardboard. Credit: Bob King

If leaves still cling to your trees this season, the narrow spaces between the leaves act like natural pinholes and will cast multiple images of the eclipsed Sun on the ground below.

You can even place one hand atop the other and let the sun shine through the gaps between your fingers to see the eclipse. Low tech as it gets, but works in a pinch.

Here are some other things to watch for during the eclipse:

* If you live where half or more of the sun will be covered, you may notice a change in the quality of daylight. To my eye, the light becomes “grayer”. What do you see?

* Telescope users will see the mountains and crater rims along the moon’s edge as tiny bumps and projections against the brilliant solar photosphere. You’ll also notice how much blacker moon is compared to sunspots. Guess what? We’ve got a huge sunspot out there right now – Region 2192. Perfect for comparison!

Partially eclipsed sun just before sunset seen from Island Lake north of Duluth in May 2012. Credit: Bob King

*  Those living where parts of the eclipse happen at sunset will get an extra special view of the sun with a big bite out of it right sitting atop the southwestern horizon.

I wish you excellent weather – good luck!

 

Monster sunspot could stir up auroras

The sun photographed this morning by NASA’s Solar Dynamics Telescope at 11:30 a.m. CDT this morning October 18. Credit: NASA

Not today and not tomorrow, but a monster sunspot group rounding the eastern limb of the sun could spunk up the fall aurora season. Active region 2192 harbors a Jupiter-sized sunspot that’s just now visible with the naked eye using a safe solar mylar filter or #14 welder’s glass. I spotted it very close to the southeastern edge of the sun today. In the coming days, it will rotate into better view, making for an easy catch with the naked eye or small telescope. I can’t emphasize enough the importance of a safe filter. You can purchase one HERE for naked eye viewing or HERE for your telescope.

Coronal mass ejection shot out by flare activity in new sunspot group 2192 on October 14 before it even rounded the sun’s limb. Image from the SOHO coronagraph. Click for video. Credit: NASA/ESA

Even before the behemoth came into view, it spawned a brilliant coronal mass ejection on October 14 and several M-class medium strength flares. If we assume that the giant spot stays potent, the sun will rotate it around to face Earth in about 6 days. Flaring and other activity would then stream in our direction.

It will also spice up the partial solar eclipse next Thursday afternoon. Watch for the black limb of the moon to not only eclipse the sun but this sunspot too!

Update: Sunspot group 2192 unleashed an strong X-1 class flare around midnight Oct. 18-19. Any material it may have launched into space would have missed Earth by a wide margin because of the group’s position near the sun’s edge.

Nearby red dwarf star unleashes X100,000 superflare

The largest flare ever recorded on the sun, an X 45 event in November 2003, pales in comparison to the estimated X 100,000 flare seen on the red dwarf star DG CVn on April 23 by NASA’s Swift satellite. The sun image is an actual photo; the dwarf star flare an artist’s view. Credit: NASA

Sometimes big things come in small packages. Last April, DG CVn, a red dwarf star only one-third the size of the sun, cut loose with a flare 10,000 times more powerful than any solar flare ever recorded. The sun’s grandest was an X 45 on November 4, 2003 which happily was directed off its western limb away from Earth. Had it happened closer to the center of the solar disk, damage to satellite electronics and power grids on the ground might have been substantial.

NASA’s Swift mission detected a record-setting series of X-ray flares unleashed by DG CVn, a nearby binary consisting of two red dwarf stars, illustrated here. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under normal conditions. Credit: NASA’s Goddard Space Flight Center/S. Wiessinger

The superflare erupted from one or the other of two closely-orbiting red dwarfs in the constellation of Canes Venatici (abbreviated CVn) located beneath the handle of the Big Dipper. While only 60 light years from Earth, the two stars orbit each other only three times Earth’s distance from the sun which is too close for the Swift satellite to know which one did the deed.

At its peak the flare shot up to 360 million degrees F (200 million C) or 12 times hotter than the center of the sun. Despite its magnitude, the star is too far away to pose any harm to Earth. As to how a smaller, cooler dwarf could unleash such an energetic blast, we have two important leads.

The sun still has a lot pep left. This M7.3 (medium class) flare erupted along the sun’s western edge on October 2 as seen by the Solar Dynamics Observatory. It was not Earth-directed. Credit: NASA

Astronomers estimate DG CVn was born about 30 million years ago, which makes it less than 0.7% the age of the solar system. Like children, youthful stars are blessed with energy and show it through rapid rotation – DG completes one spin in just under a day or 30 times faster than the sun. The sun also rotated faster in its youth and may well have produced a few of its own superflares. Now it spins once every 27 days, fast enough to amplify magnetic fields to X-class strength but no match for the younger set.

Magnetic energy gets concentrated around sunspots or starspots in the case of DG CVn. In the turbulent environment, opposite polarities (north and south poles) can snap together and reconnect, releasing gobs of stored energy as a flare.

Flares are classified according to their energy output. The weakest – A,B and C-class – have almost no effect on Earth. M-class or medium flares accompanied by blasts of solar particles can cause radio blackouts and fire up northern and southern lights. The strongest are the X-class, which can lead to long-lasting radiation storms and nights-long auroral displays.

Aftermath of the X 45 flare in November 2003 clearly shows loops of solar gases outlining the powerful magnetic field rising above the sunspot group (not visible) below. Credit: NASA

At 5:07 p.m. EDT on April 23, the rising tide of X-rays from DG CVn’s superflare triggered Swift’s Burst Alert Telescope (BAT).

“For about three minutes after the BAT trigger, the superflare’s X-ray brightness was greater than the combined luminosity of both stars at all wavelengths under normal conditions,” noted Goddard’s Adam Kowalski, who is leading a detailed study on the event. “Flares this large from red dwarfs are exceedingly rare.”

Three hours later the system exploded with another weaker flare. More flares continued in a series for the next 11 days like aftershocks from an earthquake. Astronomers have observed the same phenomenon with the sun called “sympathetic flaring” where one explosion triggers another.

Stars delight the eye and make the Earth an abode for life, but don’t get too close. They’re scary.

 

How long would it take to drive to the sun?

My old Subaru achieved lunar orbit when the odometer hit 238,000 miles several years back. Credit: Bob King

I spend way too much time in the car, mostly on the job as a photojournalist. Every day, there are places to be at this time and that. Like many who drive around for a living,  I’ve accumulated a few miles on my vehicles.

Once, in an older Subaru, I achieved a one-time dream of reaching the moon. The odometer rolled past the 238,000 mile mark – just under the average lunar distance but easily within perigee range. I would have pushed the vehicle further, but the brakes seized up and soon after I sold the car. I recall it leaving the driveway on a flatbed like a patient being wheeled away to the emergency room.

The sun is some 387 times farther from Earth than the moon. Credit: Bob King

The years of driving it took to “get to the moon” got me wondering how long it would take to drive to the sun, which lies some 93 million miles (150 million km) from Earth or 387 times farther away than the moon.  According to the Guinness Book of World Records, the record vehicle mileage goes to a 1966 Volvo P-1800S with more than  2,850,000 miles (4,586,630 km). Owned by Irvin Gordon of East Patchogue, New York, the car is still driven daily.

A commercial jet flying at 550 mph would need 19 years to reach the sun. Credit: Bob King

While that trashes my record, it’s still only 3% of the way to the sun, a nice start but barely there. Instead, let’s drive non-stop at 60 mph (97 kph). How long would it take before we would complete our journey? An amazingly long time – 177 years. Strange, isn’t it? The sun seems so close because we can feel its warmth and watch it ripen our tomatoes. But it’s out there, w-a-y out there.

Even in a commercial jet flying at 550 mph (885 kph) it would still take 19 years. I’m afraid I just don’t have that kind of time or patience. Even the 5-hour trip to Hawaii from Los Angeles made me twitchy. The Helios probes, the fastest moving space vehicles ever, reached speeds of 157,000 mph as they orbited around the sun sensing the solar wind. At that rate, the sun could be reached in just 24.7 days.


Bill Nye demonstrates the distances between the planets.

How about a planet? Let’s choose picturesque Saturn, now low in the southwestern sky at dusk. Its average distance from the sun is 891 million miles (1.4 billion km) or 1,695 years in a car. That means if we started driving in 320 A.D. when ancient Rome still dominated the western world, we’d finally arrive today. Aw heck, I’d rather take a plane and get there in just 185 years.

Maps showing the planets and layout of the solar system give a false impression of sizes and distances. But you can hardly blame the creators. There’s just too much empty space between the planets compared to their tiny sizes to squeeze it all a useful diagram. Credit: NASA

Even in the solar system, never mind the stars, distances are so immense we can hardly comprehend them. If we reduced the sun to the size of a grapefruit, Earth would be a poppy seed 35 feet (10.7 m) away, Saturn a pea at 335 feet (102 m) and the nearest star system, Alpha Centauri, a pair of grapefruits 1,800 miles (2,900 km) away. There’s so much emptiness and so little stuff, it’s mind-boggling.

Twin solar storms may stoke auroras tonight Sept. 11-12

A CME or coronal mass ejection from the sun on September 9 is expected to pass Earth later today and possibly spark auroras tonight. Credit: NASA/ESA

(Click HERE for updates))

Two bursts of solar particles propelled by flares on September 9th and 10th are expected to arrive starting tonight and possibly touch off a moderate G2 geomagnetic storm. Translation: auroras may bloom in the next few nights!

A moderate M4 flare occurred early on September 9th followed by a more powerful X1.6 yesterday afternoon. Provided the magnetic field the particles come packaged in points in the right direction – south – these bursts have good potential for creating auroras tonight and again over the weekend.

A second, Earth-directed CME leaves the sun in the wake of the X1.6 flare on September 10th. Credit: NASA/ESA

The timing is good because the moon is past full and won’t be too bright. During a moderate storm, auroras are often seen across the northern tier of states and Canada. According to the latest NOAA space weather forecast, activity should kick up but remain shy of storm level from 9 p.m.-midnight Central Daylight Time tonight September 11th.

The brunt of the storm is expected from 1-4 a.m. tomorrow morning the 12th with effects lasting until 7 a.m.

This may only be the start of an even stronger storm anticipated Friday night and continuing into the weekend beginning from yesterday’s flare. That one blasted material directly toward Earth. Always a good omen for auroras.

Earth’s magnetic bubble, generated by motions within its iron-nickel core and shaped by the solar wind, is called the magnetosphere. It extends some 40,000 miles forward of the planet and more than 3.9 million miles in the tailward direction. Credit: NASA

As always with northern lights, keep in mind they’re fickle. Most of the time, Earth’s magnetic defense – a humongous, teardrop-shaped bubble of magnetism called the magnetosphere –  acts as a bulwark against strong solar winds, letting them slide by harmlessly. We’ll see what happens on this round, but I’m optimistic.

The Earth weather forecast for my locale is mostly clear tonight, so I’ll be monitoring the sky. Stop back later for an update.

* UPDATE 9 p.m. CDT: Quiet so far. Auroras still holed up in Hudson Bay and Quebec. The magnetic field direction of the arriving wind from the sun shows a lot of variation (see ACE satellite plot, topmost graph showing Bz) rising and falling from positive to negative. Negative is good! A prolonged stay at -10 or lower increase the chance of seeing the aurora.

Hole-y auroras possible tonight Aug. 30-31 / Jupiter returns

The dark opening at the center of the sun’s disk, seen here in ultraviolet light, is a coronal hole photographed on August 28 by the Solar Dynamics Observatory. Holes are ports through which high speed particles from the sun can pour freely into space unconstrained by solar magnetic fields. Credit: NASA

Sometimes it doesn’t take a big solar storm to incite an aurora. Often enough, a hole will do. Midweek, a blizzard of electrons and protons called a coronal mass ejection arrived in Earth’s vicinity, snuck past our magnetic defenses and painted northern skies for several nights in a row with glowing curtains and rays.

Yesterday night, a coronal hole did the same. Coronal holes are openings in the sun’s otherwise ‘locked down’ magnetic canopy. In the photo above, swirls of magnetism form closed loops over most of the sun’s lower atmosphere, keeping the bubbling sea of solar plasma (charged particles) at bay.

Enhancements in the solar wind either from solar storms (CMEs) and coronal holes send a thin soup of electrons and protons into space. If a batch happens to have a southward-pointing magnetic field, it can open a crack in Earth’s northward-pointing field and stimulate oxgen atoms and nitrogen molecules to glow in the upper atmosphere. The aurora is concentrated in two ovals, one hovering over each magnetic pole. Credit: Todd Salat

The sun’s so hot that it energizes and accelerates bits and pieces of itself – electrons and protons – to speeds high enough to escape its gravitational pull. Astronomers call the gust of departing particles the solar wind. Typical speeds hover around 250 miles per second (400 km/sec), but winds leave coronal holes unchecked and can blast into space at up to 500 miles per second (800 km/sec).

When the tempest arrives at Earth and harbors south-pointing magnetism, it links into Earth’s north-pointing magnetic field, sending electrons and protons at high speed down the planet’s magnetic field lines into the upper atmosphere to spark auroras.

Coronal holes are holes where the sun’s magnetic field where the solar wind can escape at high speed. Credit: NASA

NOAA space weather forecasters expect the effects of coronal holes to continue tonight and linger through Monday. Peak possibility for northern lights tonight happens between 10 p.m. and 1 a.m. CDT. Sometimes a particular hole can persist for several solar rotations causing repeat auroras every 27 days.

Stay tuned to Ovation aurora to see if any auroras are dropping south toward your region tonight.  I’ll be in touch.

Jupiter (top) and Venus in bright twilight on August 27, 2014. Credit: Bob King

The other morning while watching aurora I was happy to see that Jupiter had jumped back into the sky. It cleared the trees during twilight and was followed a half hour later by Venus. Low elevation and wiggly air currents meant I couldn’t magnify it much, but at 64x but north and south equatorial belts were unmistakeable.

I always look forward to that first view of Jupiter after conjunction with the sun. We last saw the planet in June, quite a while back. Jupiter’s weather and cloud patterns constantly change. One never knows what to expect when it’s out of sight for a couple months – sometimes an entire equatorial belt can disappear! I’m hear to report that both are still intact.